
Labeler
and
Ruleset Processing

Todd King, Steven Joy, Joe Mafi, Erin Means

Presented at the PDS Technical Session – July 2003

The Need

n Help our data providers help us.
n Allow novice users to generate quality labels for data

products.

n Convert a large number of legacy labels to current
standards.
n Augment existing labels for use in the new on-line data

system.

n Consolidate and standardize the tools used by our
data engineers.

n Standardize our best approaches for generating
labels.

Goals

n To promote the delivery of PDS compliant products
from missions and data providers.

n To be able to provide tools that data providers can
use in-house and on their platform of choice to create
labels for data products.

n To enable a PDS data engineer to design a label
template and ruleset for the data provider.

n To have the ability to “plug-in” a service for new or
unique applications.

n To be able to perform “upgrades” to existing data
holdings.

The Approach

n Simple
n Command line applications – no fancy interfaces.

Mnemonic arguments.

n Portable
n Core software written in Java. Real push to have all

components written in Java.

n Extensible
n Ability to add capabilities without modifying the core

components.

n Minimal Restrictions
n Extensions can be written in any language.

Framework
n Templates

n A PDS label with unknown values
set as variables.

n Variables are replaced with
information collected by the
ruleset.

n Rulesets
n Instructions on how to collect

information about a specific data
item.

n Which template to use and where
to write the resulting label.

n Plug-ins
n Mini-applications, written in any

language, that perform an
external service (i.e, geometry
processor, description formatter)

n Return rulesets (values) to be
processed and merged with the
current ruleset.

PDS Compliant output

Ruleset Language
A tag based language with flow control. Directives include:

$variable = value :: Define a variable and set to value.
<RUN command> :: Run a command and processes that output of the as a ruleset.
<IF condition> <ELSEIF condition> <ELSE> </IF> :: Branching
<INCLUDE file> :: Load and process ruleset in file.
<IGNORE> :: Stop processing file – do not produce output.
<TEMPLATE file> :: Use the file as the label template
<OPTION name value> :: Set name to specified value.
<OUTPUT file> :: When generating output, write to file (default: base.lbl)
<MESSAGE text> :: Write text to display.
<ABORT> :: Stop all processing.
<COPY file dest> :: Copy file to destination.
<DUMP [stack]> :: Output the contents of the named stack.
<GLOBAL name value> :: Set persistent variable name to value.

Note: Variables can be used in any argument or an assignment.

The Implementation

Written in Java.
Classes include:

PDSLabel: PDS label parser.
PPIOption: Command line option parser.
PPIRuleset: Ruleset processor.
PPITable: Delimited table parser.
PPITime: Time parser and formatter.

Labeler

n An application to run the ruleset processor
within a file system.

n Can walk a tree and apply ruleset to each file
at each level.

n Simple command line invocation. Syntax:
java labeler ruleset pathname

 where ruleset is the file containing the ruleset to process and
pathname is the directory or name of the file to process. If
pathname is a directory, then all files in the directory and all
sub-directories are processed.

Plug-ins - Current

Current set of plug-ins:
FormatDescription: Word wrap and indent text.
IMath: Perform simple integer math.
LabelValue: Extract a value from a label.
Lookup: Find a value in an interval lookup spreadsheet.
SpreadSheet: Parse files containing a spreadsheet

(delimited text) and determine metrics.
Strings: Determine length, change case, index, and

subset strings.
TabStartStop: Return a portion (column) of the first and

last rows in an ASCII table.
TargetPhrase: Create a properly punctuated phrase

describing a list a values.
Time: Parse and construct time strings in many formats.

Plug-ins under development

n p-chronos: A Plug-in which will call the SPICE
chronos utility and format its output for use in
a ruleset.

How it Works

<MESSAGE "This is a very simple example">

<TEMPLATE template.lbl>
<INCLUDE constant.rul>
<IF $FILE_EXT = "FFH">

$DESCRIPTION = "This is a test"
<ELSEIF $FILE_EXT == "TXT">

<IF $FILE_BASE = "README">
<MESSAGE "This is the readme file.">

<ELSE>
<MESSAGE "This is another type of text

file.">
</IF>
<IGNORE>

<ELSE>
<MESSAGE "Skipping all others: $PATH_NAME
($FILE_EXT)">
<IGNORE>

</IF>

PDS_VERSION_ID = $PDS_VERSION
DATA_SET_ID = "$DSID"
STANDARD_DATA_PRODUCT_ID = "$STD_PROD_ID"
PRODUCT_ID = "$FILE_BASE"
PRODUCT_TYPE = "$PROD_TYPE"
PRODUCT_CREATION_TIME = $FILE_TIME

RECORD_TYPE = $REC_TYPE
RECORD_BYTES = $RECL
FILE_RECORDS = $RECS

START_TIME = $START_TIME
STOP_TIME = $STOP_TIME
SPACECRAFT_CLOCK_START_COUNT = "$START_SCLK"
SPACECRAFT_CLOCK_STOP_COUNT = "$STOP_SCLK"

INSTRUMENT_HOST_NAME = "$HOST_NAME"
INSTRUMENT_HOST_ID = "$HOST_ID"
ORBIT_NUMBER = $ORBIT
TARGET_NAME = $TARGET_LIST
INSTRUMENT_NAME = "$INST_NAME"
INSTRUMENT_ID = "$INST_ID"
DESCRIPTION = "
$STD_PROD_DESCR"

NOTE = "
$FF_ABSTRACT"

^TABLE = "$FILE_BASE.FFD"
OBJECT = TABLE

INTERCHANGE_FORMAT = "$INTERCHANGE"
ROWS = $RECS
COLUMNS = $COLS
ROW_BYTES = $RECL
^STRUCTURE = "$FMT"
DESCRIPTION = "
$COL_DESCR"

END_OBJECT = TABLE

^HEADER = "$FILE_BASE.FFH"
OBJECT = HEADER

BYTES = $HDR_BYTES
HEADER_TYPE = "$HDR_TPYE"
DESCRIPTION = "$HDR_DESCR"

END_OBJECT = HEADER
END

Ruleset

Template

$PDS_VERSION = PDS3
$DSID = DSID_1_0
$STD_PROD_ID = DATA
$PROD_TYPE = DATA
$REC_TYPE = FIXED

•
•
•

$COL_DESCR = "What?"
$HDR_BYTES = 80
$HDR_TPYE = FIXED
$HDR_DESCR = "This is the header file"

constant.rul

How it Works
PDS_VERSION_ID = PDS3
DATA_SET_ID = "DSID_1_0"
STANDARD_DATA_PRODUCT_ID = "DATA"
PRODUCT_ID = "EXAMPLE"
PRODUCT_TYPE = "DATA"
PRODUCT_CREATION_TIME = 2003-04-17T11:05:02

RECORD_TYPE = FIXED
RECORD_BYTES = 64
FILE_RECORDS = 10

START_TIME = 2002-10-6
STOP_TIME = 2003-01-12
SPACECRAFT_CLOCK_START_COUNT = "2400:0"
SPACECRAFT_CLOCK_STOP_COUNT = "2500:0"

INSTRUMENT_HOST_NAME = "Galileo"
INSTRUMENT_HOST_ID = "GLL"
ORBIT_NUMBER = 1024
TARGET_NAME = JUPITER
INSTRUMENT_NAME = "MAG"
INSTRUMENT_ID = "MAG"
DESCRIPTION = "

This is a short description"

NOTE = "
This is a much longer multi-line type description which
spans multiple

lines."

^TABLE = "EXAMPLE.FFD"
OBJECT = TABLE
INTERCHANGE_FORMAT = "ASCII"
ROWS = 10
COLUMNS = 4
ROW_BYTES = 64
^STRUCTURE = "Unknown"
DESCRIPTION = "
This the the description of a column from setvars.bat"

END_OBJECT = TABLE

^HEADER = "EXAMPLE.FFH"
OBJECT = HEADER
BYTES = 80
HEADER_TYPE = "FIXED"
DESCRIPTION = "This is the header file"

END_OBJECT = HEADER
END

Label

How We Are Using Labeler

n Add keywords to existing labels.
n Upgrade labels to current standards.
n Generate labels for new data products.
n Update keyword values (i.e., improved

ephemeris or pointing information)

Where to get it…

n http://www.igpp.ucla.edu/pds/

