Labeler
and
Ruleset Processing

Todd King, Steven Joy, Joe Mafi, Erin Means

Presented at the PDS Technical Session — July 2003

The Need

Help our data providers help us.
Allow novice users to generate guality labels for data
products.
Convert a large number of legacy labels to current
standards.

Augment existing labels for use in the new on-line data
system.

Consolidate and standardize the tools used by our
data engineers.

Standardize our best approaches for generating
labels.

Goals

To promote the delivery of PDS compliant products
from missions and data providers.

To be able to provide tools that data providers can
use in-house and on their platform of choice to create
labels for data products.

To enable a PDS data engineer to design a label
template and ruleset for the data provider.

To have the abillity to “plug-in” a service for new or
unique applications.

To be able to perform “upgrades” to existing data
holdings.

The Approach

Simple
Command line applications — no fancy interfaces.
Mnemonic arguments.

Portable

Core software written in Java. Real push to have all
components written in Java.

Extensible

Ability to add capabilities without modifying the core
components.

Minimal Restrictions
Extensions can be written in any language.

Framework

Templates

A PDS label with unknown values
set as variables.

Variables are replaced with
information collected by the
ruleset.

Rulesets

Instructions on how to collect
information about a specific data
item.

Which template to use and where
to write the resulting label.

Plug-ins
Mini-applications, written in any ‘

| !I'fllli 1
=

language, that perform an PDS Compliant output

external service (i.e, geometry
processor, description formatter)

Return rulesets (values) to be
processed and merged with the
current ruleset.

Ruleset Language

A tag based language with flow control. Directives include:

$variable = value :: Define a variable and set to value.

<RUN command> :: Run a command and processes that output of the as a ruleset.
<IF condition> <ELSEIF condition> <ELSE> </IF> :: Branching
<INCLUDE file> :: Load and process ruleset in file.

<IGNORE> :: Stop processing file — do not produce output.
<TEMPLATE file> :: Use the file as the label template

<OPTION name value> :: Set name to specified value.

<OUTPUT file> :: When generating output, write to file (default: base.lbl)
<MESSAGE text> :: Write text to display.

<ABORT?> :: Stop all processing.

<COPY file dest> :: Copy file to destination.

<DUMP [stack]> :: Output the contents of the named stack.

<GLOBAL name value> :: Set persistent variable name to value.

Note: Variables can be used in any argument or an assignment.

The Implementation

Written In Java.
Classes include:

D

U U U U

D

D
D
D

DSLabel: PDS label parser.

Option: Command line option parser.
Ruleset: Ruleset processor.
Table: Delimited table parser.
Time: Time parser and formatter.

L abeler

An application to run the ruleset processor
within a file system.

Can walk a tree and apply ruleset to each file
at each level.

Simple command line invocation. Syntax:

j ava | abel er rul eset pat hnane

where ruleset is the file containing the ruleset to process and
pathname is the directory or name of the file to process. If
pathname is a directory, then all files in the directory and all
sub-directories are processed.

Plug-ins - Current

Current set of plug-ins:
FormatDescription: Word wrap and indent text.
IMath: Perform simple integer math.
LabelValue: Extract a value from a label.
Lookup: Find a value in an interval lookup spreadsheet.

SpreadSheet: Parse files containing a spreadsheet
(delimited text) and determine metrics.

Strings: Determine length, change case, index, and
subset strings.

TabStartStop: Return a portion (column) of the first and
last rows in an ASCII table.

TargetPhrase: Create a properly punctuated phrase
describing a list a values.

Time: Parse and construct time strings in many formats.

Plug-1ns under devel opment

p-chronos: A Plug-in which will call the SPICE
chronos utility and format its output for use In
a ruleset.

How It Works

Ruleset

<MESSAGE "This is a very sinple exanple">

<TEMPLATE tenpl ate.| bl >
<I NCLUDE const ant. rul >
<IF $FI LE_EXT = "FFH'>
$DESCRIPTION = "This is a test"
<ELSEl F $FI LE_EXT == "TXT">
<|I F $FI LE_BASE = " README" >
<MESSAGE "This is the readne file. ">
<ELSE>
<MESSAGE "This is another type of text
file.">
</l F>
<| GNORE>
<ELSE>
<MESSAGE "Ski pping all others: $PATH NAME
($FI LE_EXT) ">
<| GNORE>
</l F>

constant.rul

$PDS_VERSI ON = PDS3
$DSID = DSID_1_0
$STD_PROD_|I D = DATA
$PROD_TYPE = DATA
$REC_TYPE = FI XED

$COL_DESCR = "What 2"

$HDR_BYTES = 80

$HDR_TPYE = FI XED

$HDR_DESCR = "This is the header file"

Template
PDS_VERSI ON_| D = $PDS_VERSI ON
DATA SET I D = "$DSI D'
STANDARD DATA_PRCDUCT | D = "$STD PROD | D'
PRODUCT | D = "$FI LE_BASE"
PRODUCT_TYPE =" $PRCD_TYPE"
PRODUCT_CREATI ON_TI ME = $FI LE_TI ME
RECORD_TYPE = $REC TYPE
RECCRD BYTES = $RECL
FI LE_RECCRDS = $RECS
START_TI ME = $START_TI ME
STCP_TI ME = $STOP_TIME
SPACECRAFT_CLOCK_START _COUNT = "$START SCLK"
SPACECRAFT_CLOCK_STOP_COUNT = "$STOP_SCLK"
| NSTRUVENT _HOST_NAMVE = "$HOST_NAME"
| NSTRUMENT_HCST | D = "$HOST_I D'
ORBI T_NUMBER = $ORBI T
TARGET_NAME = $TARGET_LI ST
I NSTRUMENT_NAME = "$I NST_NAME"
I NSTRUMVENT | D = "$INST_I D'
DESCRI PTI ON S

$STD_PROD_DESCR"

NOTE
$FF_ABSTRACT"

ATABLE
OBJECT
| NTERCHANGE_FORVAT
ROAS
OOLUWNS
ROW BYTES
ASTRUCTURE
DESCR PTI ON
$00L_DESCR'
END_OBJECT

AHEADER

OBJECT
BYTES
HEADER TYPE
DESCRI PTI ON

END_OBJECT

END

"$FI LE_BASE. FFD'
TABLE

" $I NTERCHANCGE"
$RECS

$0LS

$SRECL

" SFMT"

TABLE

"$FI LE_BASE. FFH'
HEADER

$HDR BYTES
"$HDR TPYE"

" $HDR_DESCR'
HEADER

How It Works

Label

PDS_VERSI ON_I D
DATA SET I D
STANDARD DATA PRCDUCT | D
PRCDUCT | D

PRCDUCT_TYPE
PRCDUCT_CREATI ON_TI MVE

RECCRD_TYPE
RECCRD_BYTES
FI LE_REOCRDS

START_TI ME
STCP_TI ME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOOK_STCP_COUNT

| NSTRUVENT_HOST_NAVE
I NSTRUVENT_HCST_| D
ORBI T_NUMBER
TARGET_NAME
| NSTRUVENT_NAME
I NSTRUMENT_I D
DESCRI PTI ON
This is a short descript

NOTE

This is a nuch | onger nu
spans multiple

lines."

ATABLE
CBJECT

| NTERCHANGE_FORVAT

ROWB

COLUWNS

ROW BYTES

ASTRUCTURE

DESCRI PTI ON

This the the description

END_CBJECT

AHEADER
OBJECT
BYTES
HEADER TYPE
DESCRI PTI ON
END_OBJECT
END

PDS3

"DSID 1_0"

" DATA"

" EXAMPLE"

" DATA"

2003- 04- 17T11: 05: 02

2002-10-6
2003-01-12
"2400: 0"
"2500: 0"

"Glil eo"
QL
1024

JUPI TER
" VAG

" NAG!

n"

o

ti-line type description which

" EXAMPLE. FFD'
TABLE

ASC "

10

4

64

" Unknown"

of a colum from setvars. bat"
= TABLE

" EXAMPLE. FFH'

HEADER

80

" FI XED'

"This is the header file"
HEADER

How We Are Using Labeler

Add keywords to existing labels.
Upgrade labels to current standards.
Generate labels for new data products.

Update keyword values (i.e., improved
ephemeris or pointing information)

Whereto get It...

http://www.igpp.ucla.edu/pds/

