
PPI Ruleset Language

and Examples

Todd King

Institute of Geophysics and Planetary Physics

UCLA

Applications and ruleset language designed by: Steve Joy, Todd King, Joe Mafi
and Erin Means

Last Updated: September 13, 2007

Available from: http://www.igpp.ucla.edu/pds/ruleset

 i

Introduction... 1
Ruleset Language.. 1

Comments ... 1
Variables ... 2
Directives .. 3

ABORT... 3
COPY.. 3
ELSE... 4
ELSEIF ... 4
GLOBAL .. 4
IF ... 5
/IF.. 5
IGNORE ... 5
INCLUDE... 6
MESSAGE.. 6
OPTION.. 6
OUTPUT... 7
RUN .. 7
TEMPLATE.. 8

Plug-ins ... 8
Application: PPIRuleset.. 9
Examples... 9

 1

Introduction
The Ruleset description maker is based on the ruleset processing engine and ruleset
language designed by Steve Joy, Todd King, Joe Mafi and Erin Means at the Institute of
Geophysics and Planetary Physics at UCLA. The ruleset engine takes as input a ruleset
specified in the ruleset language (described later) and a template for a description. A
template description can be any text file including XML and PDS Labels. PDS labels are
syntactically validated during processing, whereas other formats are not. A template
contains variables that will be replaced by the ruleset engine. The ruleset details how to
define the variables needed by the template. Variables can be defined by direct
assignments, through conditional branching, using plug-ins (external applications that
return rulesets) or including other rulesets. The output file is generated after the ruleset is
processed and all variables are replaced in the template. This is depicted in Figure 1

Figure 1: Basic functions of ruleset processing.

Ruleset Language
The ruleset scripting language is designed to offer a simple and extensible framework for
setting the values of variables and to use those variables in creating formatted output.
There are three distinct entities of a rule set: comments, variables and directives.

Comments

A comment is any line of text that begins with either “#” or a “/”. All of the following are
permissible comments:

This is a comment using shell script commenting

// This is a comment using C++ style commenting

/* This is a comment using C style commenting */

Ruleset
Engine

Metadata
Template

Ruleset

Output

Plug-in
Included
Ruleset

 2

It is important to note that while you can create comments which look like C style
comments, the begin (/*) and end (*/) comment rules do not apply. Therefore, you can
not create comment blocks which span multiple lines or embed comments within a line.

Variables

The central entity of a ruleset is the variable. A variable is simply a named value. The
syntax for defining a variable is:

$name = value

where the “$” is literal, name is the tag for the variable and value is the text to associate
with the name. A name may contain any alphanumeric character and the underscore (_).
A value may contain any text. A value may span multiple lines if it is enclosed in quotes
(“) or is a list enclosed in curly braces (i.e. { }) or parenthesis (i.e. ()).

Some example variable statements are:

$DATA_TYPE = document

$DESCRIPTION = “This is a lot of text which

can span multiple lines.”

$LIST = { “Value1”,

“Value2”,

“Value3”}

There are several variables that are defined by the ruleset processor when a ruleset is used
with a file. These variables are:

FILE_PATH The path portion of the file specification.

FILE_NAME The name of the file currently being processed. This includes
the file extension, but does not include any path information.

PATH_NAME The combined path and filename.

FILE_EXT The portion of the file name that follows the last period (.).
The extension of the file name.

FILE_BASE The portion of the file name that excludes the file extension.

FILE_SIZE The size in bytes of the file.

FILE_DATE The date portion of the file creation timestamp. It is in PDS
style (yyyy-MM-dd)

FILE_TIME The complete timestamp of the file in PDS style (yyyy-MM-
ddThh:mm:ss)

FILE_MD5 The MD5 checksum for the file.

 3

some additional variables are set at the time the file is processed. These include:

NOW_DATE The current system date in the format:
 YYYY-MM-DD

NOW_TIME The current system time in the format:
 YYYY-MM-DDTHH:MM:SS

When a variable is used the order in which the variable is resolved is by first looking for
the variable in the ordinary list of variables, then looking in the list of global variables,
then the list of system defined variables. These means that is possible to override a
system variable with a local or global variable definition.

Directives

Directives are commands to the ruleset processor which control which rules are executed
and provide an interface to external files or applications (plug-ins) for acquiring rulesets.
A directive may have one or more arguments. A directive and any related arguments are
enclosed in angle brackets (<>). The canonical form of a directive is:

<directive [argument …]>

The available directives are:

ABORT

The ABORT directive ends the processing of the rules and reports that all processing
should end. The rule form using the ABORT directive is:

<ABORT>

An example is:

<ABORT>

A typical use of ABORT is when some error is encountered and no recovery is possible.

COPY

The COPY directive instructs the ruleset processor to copy a file from one location to
another. The rule form using the INCLUDE directive is:

<COPY source destination>

The source can be a relative or absolute path. If it is a relative path it will be relative to
the file currently being processed. The destination can be a directory or a filename. If it
is a directory the will be file copied to the destination using its original file name. If the
destination includes a file name, then the file will be copied to a file with the name given.
If destination is omitted, then the current value of FILE_PATH is used.
An example is:

 4

<COPY /sutff/mag.fmt new.fmt>

will load the file “mag.fmt” from the “/stuff” directory to the same directory as the file
the ruleset is running on. The name of the copied file will be “new.fmt”.

ELSE

The ELSE directive marks the beginning of a block of rules which will be executed if the
condition of the preceding IF directive are not met. An ELSE block can only occur
between an IF and /IF directive and marks the end of the preceding block of rules. The
rule form for using the ELSE directive is:

<ELSE>

ELSEIF

The ELSEIF directive marks the beginning of a block of rules which will be executed if
the value associated with a variable matches the specified pattern. An ELSEIF block can
only occur between an IF and /IF directive and marks the end of the IF block. An ELSEIF
will be checked only if the proceeding IF or ELSEIF block did not match its pattern. The
rule form using the ELSEIF directive is:

<ELSEIF variable = pattern>

An example is:

<IF $FILE_NAME = “*03”>

Do something

<ELSEIF $FILE_NAME = “*04”>

Do something else

</IF>

will be true if the value of $FILE_NAME ends with the characters “04”.

GLOBAL

The GLOBAL directive defines a variable that should persist between executions of
individual rulesets. It is the responsibility of the calling application to preserve each
global variable. The rule form using the GLOBAL directive is:

<GLOBAL variable value>

where variable is the name of the persistent variable and it is assigned value.

 5

IF

The IF directive marks the beginning of a block of rules which will be executed if the
value associated with a variable matches the specified pattern. The rule form using the IF
directive is:

<IF $variable = pattern>

or
<IF $variable != pattern>

or
<IF $variable>

where variable is the name of the variable and pattern is the pseudo regular expression of
the pattern to compare to the value of variable. A pattern can contain any regular
expression syntax with the following exception. All periods (.) are considered literal and
a star (*) is considered a match for zero or more characters. If just the $variable is
specified then the existence of the variable is checked. If it is not defined false is
returned. If it is defined, but is empty false is returned. Otherwise true is returned.
Preceding the equal sign (=) with a exclamation point (!) means “not equal to”.

The end of the IF block of rules is marked with the </IF> directive.

An example is:

<IF $FILE_NAME = “*03”>

Do something

</IF>

will be true if the value of $FILE_NAME ends with the characters “03”.

/IF

The /IF directive marks the end of the block of rules that was marked with the most
recent IF directive.

<IF $FILE_NAME = “*03”>

Do something

</IF>

IGNORE

The IGNORE directive ends the processing of the rules and reports that no output should
be generated. The rule form using the IGNORE directive is:

<IGNORE>

An example is:

 6

<IGNORE>

A typical use of IGNORE is when some condition in the ruleset is encountered that
would make output undesirable. For example, when files with a particular extension of
encountered and no label should be generated for such files.

INCLUDE

The INCLUDE directive instructs the ruleset processor to open a file and load the
contents as a set of rules. The rules will be run using the current variables and the
resulting variables will be merged into the current list of variables. The rule form using
the INCLUDE directive is:

<INCLUDE filename>

An example is:

<INCLUDE constant.rul>

will load the file “constant.rul” and interpret it as a set of rules.

MESSAGE

The MESSAGE directive provides a means to display a message for the user. A message
may span multiple lines. Each argument to the MESSAGE directive is displayed on a
new line. Arguments may quoted so that text that contain spaces can be displayed on a
single line. Text may also contain references to variables which will be replaced before
displaying the text.. The rule form using the MESSAGE directive is:

<MESSGE [arguments …]>

An example is:

<MESSAGE “This is an example message.”>

will display the following:

This is an example message.

OPTION

The OPTION directive sets the value of an option for the ruleset processor. Options are
parameters that control how the various directives in the ruleset processor perform. The
rule form using the OPTION directive is:

<OPTION option value>

 7

The available options are:

PAD_FILE Indicates whether to pad the output file. If true the file will
be padded to the width set is PAD_WIDTH, otherwise the
file will not be padded.

PAD_WIDTH The width in characters to pad each line in a file.

INDENT The number of spaces to pad the beginning of a line which
has been wrapped

WRAP_LINE The width in characters that each line will be wrapped.

FORCE_UPPER Indicates that file names will be forced to uppercase. If true
the file names will be converted to upper case, otherwise
the filename will be unchanged.

EQUAL_AT The position to align the equal sign following a keyword.

OUTPUT

The OUTPUT directive defines the name of the file the output will be written. If the
output file name is not specified it defaults to $BASE_NAME with the extension “.lbl”.
The rule form using the OUTPUT directive is:

<OUTPUT filename>

An example is:

<OUTPUT example.lbl>

defines “example.lbl” as the name of the file to write the output.

Setting the output to "-" will write the output to the default output stream. When run on
the command line this will be the display (standard out). When run in a servlet this can be
the HTTP response stream (JspWriter).

RUN

The RUN directive will execute a command, passing any number of arguments, and
process the output from the command as a set of rules. A command may be an external
application, script or executable process. In order to be used by a ruleset the output must
be a set of rules which will be executed by the ruleset processor. Because of this
requirement the command is also referred to as a “plug-in”. The rule form using the RUN
directive is:

<RUN command [arguments...]>

Each argument passed to the command may contain references to variables. Each
reference will be replaced with the current value of the variable prior to running the
command. In this way, information defined in previous rules can be passed from plug-in
to plug-in.

 8

An example is:

<RUN extract $PATH_NAME>

will run the command “extract” which will presumably extract some information from a
file.

TEMPLATE

The TEMPLATE directive defines the file which will be used generating output. The
template must be a PDS label. Each occurrence of a variable name in the template will be
replaced with the value of the variable prior to generating an output file. The rule form
using the TEMPLATE directive is:

<TEMPLATE filename>

An example is:

<TEMPLATE template.lbl>

defines “template.lbl” as the file which contains the template to use.

Plug-ins
A plug-in is an external application, script or process which can be run from the ruleset
processor. A plug-in can be passed any number of arguments on its command line and the
output is collected by the ruleset processor and interpreted as a set of rules. Suppose you
want to write an application which will scan a data file and extract the start and stop
times from the file. You could have an application called “extract” which accepts one
command line argument, the name of the file to scan. So, the rule you would use to call
the plug-in is:

<run extract $PATH_NAME>

The output of “extract” should be something like:

$START=2003-04-23T00:00:00

$STOP=2003-04-24T00:00:00

which will define the variables START and STOP. These variables could then be used in
a template with something like this:

START_TIME = $START

STOP_TIME = $STOP

A plug-in can return any legal ruleset and may include IF/ELSEIF/ELSE branches,
INCLUDE, RUN rules.

 9

Embedding the Processor
The ruleset processor can be embedded in other applications. The ruleset processor
supports writing the output to files, standard out or to HTTP servlet response streams.

Application: PPIRuleset
In the java implementation of the ruleset processor the class "pds.ruleset.PPIRuleset" is
executable and provides all the necessary services to use the Ruleset language. The
command line arguments to "pds.ruleset.PPIRuleset" are the name of the file that
contains the ruleset and the file to apply the ruleset to. It can be run with the command:

java pds.ruleset.PPIRuleset example.rul datafile

Complete documentation for the Java ruleset processor (pds.java) is located at:
http://www.igpp.ucla.edu/pds/ruleset/doc

Examples
Here is a complete example which demonstrates a large part of the capabilities of the
ruleset processor. Suppose we have a set of constants that are the same for every label we
want to create. We also have an application called “extract” which will determine the
start and stop times for a data file. Then the following ruleset will load the constants, load
a template, run the plug-in and generate an output label paired with the data file.

The contents of the constant.rul file is:

example.rul

<INCLUDE constant.rul>

<TEMPLATE template.lbl>

<OUTPUT $BASE_NAME.lbl>
<RUN extract $PATH_NAME>

 10

The contents of the template file is:

constant.rul

$PDS_VERSION = PDS3
$DSID = DSID_1_0
$STD_PROD_ID = DATA
$PROD_TYPE = DATA
$REC_TYPE = FIXED
$RECL = 120
$RECS = 512
$START_SCLK = 2400:0
$STOP_SCLK = 2500:0
$HOST_NAME = Galileo
$HOST_ID = GLL
$ORBIT = 1024
$TARGET_LIST = JUPITER
$INST_NAME = MAG
$INST_ID = MAG
$STD_PROD_DESCR = "This is a short description"
$FF_ABSTRACT = "This is a much longer
multi-line type description which
spans multiple lines."
$INTERCHANGE = ASCII
$RECS = 10
$COLS = 4
$RECL = 64
$FMT = Unknown
$COL_DESCR = "What?"
$HDR_BYTES = 80
$HDR_TPYE = FIXED
$HDR_DESCR = "This is the header file"

 11

The output from the “extract” command will look like:

template.lbl

PDS_VERSION_ID = $PDS_VERSION
DATA_SET_ID = "$DSID"
STANDARD_DATA_PRODUCT_ID = "$STD_PROD_ID"
PRODUCT_ID = "$FILE_BASE"
PRODUCT_TYPE = "$PROD_TYPE"
PRODUCT_CREATION_TIME = $FILE_TIME

RECORD_TYPE = $REC_TYPE
RECORD_BYTES = $RECL
FILE_RECORDS = $RECS

START_TIME = $START_TIME
STOP_TIME = $STOP_TIME
SPACECRAFT_CLOCK_START_COUNT = "$START_SCLK"
SPACECRAFT_CLOCK_STOP_COUNT = "$STOP_SCLK"

INSTRUMENT_HOST_NAME = "$HOST_NAME"
INSTRUMENT_HOST_ID = "$HOST_ID"
ORBIT_NUMBER = $ORBIT
TARGET_NAME = $TARGET_LIST
INSTRUMENT_NAME = "$INST_NAME"
INSTRUMENT_ID = "$INST_ID"
DESCRIPTION = "
$STD_PROD_DESCR"

NOTE = "
$FF_ABSTRACT"

^TABLE = "$FILE_BASE.FFD"
OBJECT = TABLE
 INTERCHANGE_FORMAT = "$INTERCHANGE"
 ROWS = $RECS
 COLUMNS = $COLS
 ROW_BYTES = $RECL
 ^STRUCTURE = "$FMT"
 DESCRIPTION = "
 $COL_DESCR"
END_OBJECT = TABLE

^HEADER = "$FILE_BASE.FFH"
OBJECT = HEADER
 BYTES = $HDR_BYTES
 HEADER_TYPE = "$HDR_TPYE"
 DESCRIPTION = "$HDR_DESCR"
END_OBJECT = HEADER
END

 12

If the execution of this ruleset runs without returning an IGNORE then a label file will be
written which has the same base name as the file that is processed and will look like:

Outut from extract

$START_TIME = 2002-10-6T00:00:00

$STOP_TIME = 2003-01-12T00:00:00

$START_SCLK = 2400:0
$STOP_SCLK = 2500:0

 13

output.lbl

PDS_VERSION_ID = PDS3
DATA_SET_ID = "DSID_1_0”
STANDARD_DATA_PRODUCT_ID = "DATA"
PRODUCT_ID = ""
PRODUCT_TYPE = "DATA"
PRODUCT_CREATION_TIME = 2003-11-17T10:30:00.000

RECORD_TYPE = FIXED
RECORD_BYTES = 120
FILE_RECORDS = 512

START_TIME = 2002-10-6T00:00:00
STOP_TIME = 2003-01-12T00:00:00
SPACECRAFT_CLOCK_START_COUNT = "2400:0"
SPACECRAFT_CLOCK_STOP_COUNT = "2500:0"

INSTRUMENT_HOST_NAME = "Galileo"
INSTRUMENT_HOST_ID = "GLL"
ORBIT_NUMBER = 1024
TARGET_NAME = Jupiter
INSTRUMENT_NAME = "MAG"
INSTRUMENT_ID = "MAG"
DESCRIPTION = "
This is a short description "

NOTE = "
This is a much longer
multi-line type description which
spans multiple lines ."

^TABLE = "EXAMPLE.FFD"
OBJECT = TABLE
 INTERCHANGE_FORMAT = "ASCII"
 ROWS = 10
 COLUMNS = 4
 ROW_BYTES = 64
 ^STRUCTURE = "Unknown"
 DESCRIPTION = "
 What?"
END_OBJECT = TABLE

^HEADER = "EXAMPLE.FFH"
OBJECT = HEADER
 BYTES = 80
 HEADER_TYPE = "FIXED"
 DESCRIPTION = "This is the header file"
END_OBJECT = HEADER
END

